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ABSTRACT 
 

The slope stability analysis is routinely performed by engineers to estimate the stability of 

river training works, road embankments, embankment dams, excavations and retaining 

walls. This paper presents a new approach to build a model for the prediction of slope 

stability state. The support vector machine (SVM) is a new machine learning method based 

on statistical learning theory, which can solve the classification problem with small 

sampling, non-linearity and high dimension. However, the practicability of the SVM is 

influenced by the difficulty of selecting appropriate SVM parameters. In this study, the 

proposed hybrid harmony search (HS) with SVM was applied for the prediction of slope 

stability state, in which HS was used to determine the optimized free parameters of the 

SVM. A dataset that includes 55 data points was applied in current study, while 45 data 

points (80%) were used for constructing the model and the remainder data points (10 data 

points) were used for assessment of degree of accuracy and robustness. The results obtained 

indicate that the SVM-HS model can be used successfully for the prediction of slope 

stability state for circular failure. 
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1. INTRODUCTION 
 

Slope stability analysis is an important area in geotechnical engineering. Most textbooks on 

soil mechanics include several methods of slope stability analysis. A detailed review of 
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equilibrium methods of slope stability analysis is presented by Duncan [1]. These methods 

include the ordinary method of slices, force equilibrium methods, Morgenstern and Price’s 

method; Janbu’s generalized procedure of slices, Spencer’s method and Bishop’s modified 

method. These methods, in general, require the soil mass to be divided into slices. The 

directions of the forces acting on each slice in the slope are assumed. This assumption is a 

key role in distinguishing one limit equilibrium method (LEM) from another. The LEMs 

require a continuous surface passes the soil mass. This surface is essential in calculating the 

minimum safety factor (SF) against sliding or shear failure [2-4]. Generally, LEMs were 

developed before the advent of computers; computationally complex methods followed 

later. These methods require data about the geometrical parameters and the strength 

parameters of the soil. In LEMs, slope stability is analyzed by first computing the SF. The 

SF is defined as the ratio of reaction over action, expressed in terms of moments or forces, 

and eventually in terms of stresses, depending on the geometry of the assumed slip surface. 

In circular mechanisms of failure, SF is defined in terms of moments about the center of the 

failure arc, as the ratio of the moment of shear strength along the failure arc over the 

moment of weight of the failure mass. With the development of cheaper personal computer, 

numerical methods have been increasingly used in slope stability analysis [5, 6]. Also, 

during the last years, intelligence system approaches such as support vector machine (SVM) 

have been used successfully, often in different separation and technological applications, 

mainly due to its powerfulness modeling and classification. SVM is a popular pattern 

classification method with many diverse applications is an emerging data classification 

technique proposed by Vapnik [7], and has been widely adopted in various fields of 

classification problems in recent years [8, 9]. 

Kernel parameter setting in the SVM training procedure, along with the feature selection, 

significantly influences the classification accuracy. Several kernel functions help the SVM in 

obtaining the optimal solution. The most frequently used such kernel functions are the 

polynomial, sigmoid and radial basis kernel function (RBF) [10]. The RBF is generally 

applied most frequently, because it can classify multi-dimensional data, unlike a linear kernel 

function. Additionally, the RBF has fewer parameters to set than a polynomial kernel. RBF 

and other kernel functions have similar overall performance. Consequently, RBF is an 

effective option for kernel function. Therefore, this study applies an RBF kernel function in 

the SVM to obtain optimal solution. Two major RBF parameters applied in SVM, C and σ, 

must be set appropriately. Parameter C represents the cost of the penalty. The choice of value 

for C influences on the classification outcome. If C is too large, then the classification 

accuracy rate is very high in the training phase, but very low in the testing phase. If C is too 

small, then the classification accuracy rate unsatisfactory, making the model useless. 

Parameter σ has a much greater influence on classification outcomes than C, because its value 

affects the partitioning outcome in the feature space. An excessively large value for parameter 

σ results in over-fitting, while a disproportionately small value leads to under-fitting [11]. 

The value of parameters C and σ that lead to the highest classification accuracy rate in 

this interval can be found by setting appropriate values for the upper and lower bounds (the 

search interval) and the jumping interval in the search. Meta-heuristic approaches are 

commonly employed to help in looking for the best feature subset, such as genetic algorithm 

(GA) [12, 13], particle swarm optimization (PSO) [14, 15], Grid search [16, 17], and ant 

colony optimization (ACO) [18, 19]. 
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In the present paper, for the achievement of the above-mentioned purpose, a fast, robust 

and easy to used method so-called HS is applied as the searching strategy for finding the 

optimal value of user-defined parameters.  

In this paper, the HS is capable of improving the performance of SVM through 

determining their free parameters. Integration of SVM model and HS algorithm produced a 

model, which can to predict of slope stability state for circular failure with good precision. 

 

 

2. METHODOLOGY 

 

2.1 Support vector regression 

The purpose of the SVM classification is to find optimal separating hyperplane by 

maximizing the margin between the separating hyperplane and the data. Assume that, a set 

of data 1{ , }m

i i iT x y  is given, where, xi denotes the input vectors,  1, 1iy    stands for 

two classes, and m is the sample number. It is possible to determine the hyperplane f(x)=0 

that separates the given data when two classes are linearly separable: 

 

( ) . 0f x w x b    (1) 

 

where, w denotes the weight vector, and b denotes the bias term. w and b are used to define 

the position of separating hyperplane. The separating hyperplane should be satisfying the 

constraints: 

 

( ) ( . ) 1, 1,2,...,i i i iy f x y w x b i m     (2) 

 

Positive slack variables 
i  are introduced to measure the distance between the margin 

and the vectors xi that lying on the wrong side of the margin. Then, the optimal hyperplane 

separating the data can be obtained by the following optimization problem: 
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where, C is the error penalty. By the lagrangian multipliers ai introduced, the above 

mentioned optimization problem is transformed into the dual quadratic optimization 

problem, that is: 

 

1 , 1

1

1
( ) ( . )

2

0, 0, 1,...,

m m

i i j i j i j

i i j

m

i i i

i

Maximize L y y x x

Subject to y i m

   

 

 



 

  

 



 
(4) 



H. Fattahi 

 

106 

Thus, the linear decision function is created by solving the dual optimization problem, 

which is defined as: 

 

, 1

( ) ( . )
m

i i i j

i j

f x sign y x x b


 
  

 
  (5) 

 

The SVM can also be used in non-linear classification by using kernel function. By using 

the non-linear mapping function φ(•) the original data x is mapped into a high-dimensional 

feature space, where the linear classification is possible. The non-linear decision function is: 

 

, 1

( ) ( . )
m

i i i j

i j

f x sign y K x x b


 
  

 
  (6) 

 

Where, ( . )i jK x x is called the kernel function, ( . ) ( ) ( )i j i jK x x x x  . The SVM 

constructed by radial basis function   2( . ) exp 2i j i jK x x x x   
 
has excellent non-

linear classification ability. 

 

2.2 Harmony search 

In order to explain the harmony Search (HS) in more detail, first idealize the improvisation 

process by a skilled musician. When a musician is improvising, he or she has three possible 

choices: (1) play any famous piece of music (a series of pitches in harmony) exactly from 

his or her memory; (2) play something similar to a known piece (thus adjusting the pitch 

slightly); or (3) compose new or random notes [20]. Geem et al. [21, 22] formalized these 

three options into quantitative optimization process, and the three corresponding 

components become: usage of harmony memory, pitch adjusting, and randomization [21, 

22]. The usage of harmony memory is important, as it is similar to the choice of the best-fit 

individuals in the GA. This will ensure that the best harmonies will be carried over to the 

new harmony memory. In order to use this memory more effectively, it is typically assigned 

as a parameter  0,1acceptr  , called harmony memory accepting or considering rate. If this 

rate is too low, only few best harmonies are selected and it may converge too slowly. If this 

rate is extremely high (near 1), almost all the harmonies are used in the harmony memory, 

then other harmonies are not explored well, leading to potentially wrong solutions. 

The second component is the pitch adjustment determined by a pitch bandwidth brange and 

a pitch adjusting rate rpa. Though in music, pitch adjustment means to change the 

frequencies, it corresponds to generate a slightly different solution in the HS algorithm [21, 

22]. In theory, the pitch can be adjusted linearly or nonlinearly, but in practice, linear 

adjustment is used. 

 

new old rangex x b   
 

(7) 

 

Where xold is the existing pitch or solution from the harmony memory, and xnew is the new 
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pitch after the pitch adjusting action. This essentially produces a new solution around the 

existing quality solution by varying the pitch slightly by a small random amount [21-23]. 

Here ε is a random number generator in the range of [-1,1]. Pitch adjustment is similar to the 

mutation operator in genetic algorithms. We can assign a pitch-adjusting rate (rpa) to control 

the degree of the adjustment. A low pitch adjusting rate with a narrow bandwidth can slow 

down the convergence of HS because the limitation in the exploration of only a small 

subspace of the whole search space. On the other hand, a very high pitch-adjusting rate with 

a wide bandwidth may cause the solution to scatter around some potential optima as in a 

random search. Thus, we usually use rpa=0.1~0.5 in most applications. The third component 

is the randomization, which is to increase the diversity of the solutions. Although adjusting 

pitch has a similar role, but it is limited to certain local pitch adjustment and thus 

corresponds to a local search. The use of randomization can drive the system further to 

explore various diverse solutions so as to find the global optimality [20]. The three 

components in harmony search can be summarized as the pseudo code shown in Fig. 1. In 

this pseudo code, we can see that the probability of randomization is 

 

1random acceptp r   (8) 

 

and the actual probability of adjusting pitches is 

 

pitch accept pap r r   (9) 

 

 
Figure 1. Pseudo code of the Harmony Search algorithm [20] 

The HS was used in different applications by various researchers worldwide [24-27].  

 

2.3 Parameters optimization of the support vector machine based on harmony search 

The selection of the parameters C and σ has a great influence on the performance of the 

SVM. In this study, the HS was used to determine the optimized C and σ. Fig. 2 presents the 
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process of optimizing the SVM parameters with the HS.  

 

 
Figure 2. The process of optimizing the SVM parameters with the HS 

 

As shown in Fig. 2, in step 4, the SVM model is trained with the parameters C and σ 

included in current harmony. The fivefold cross validation, which offers the best 

compromise between computational cost and reliable parameter estimates, is used to 

evaluate fitness. In fivefold cross validation, the training data set is randomly divided into 5 

mutually exclusive subsets of approximately equal size, in which 4 subsets are used as the 

training set and the last subset is used as validation. The above-mentioned procedure is 

repeated 5 times, so that each subset is used once for validation. The fitness function is 

defined as the 1-CAvalidation of the fivefold cross validation method on the training data set, 

which is shown in Eq. (10). The solution with a bigger CAvalidation has a smaller fitness value. 
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where, yc and yf represent the number of true and false classifications, respectively. 

 

 

3. INPUTS AND OUTPUT DATA 
 

The main scope of this work is to implement the above methodology in the problem of the 
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slope stability state prediction for circular failure. 

The input data for the SVM-HS model has been taken from information published by Sah 

et al. [28] and Xu and Xie [29]. The input layer data consists of six input parameters in the 

case of circular failure. The parameters that have been selected are related to the geometry 

and the geotechnical properties of each slope. More specifically, the parameters used for 

circular failure were height (H), cohesion (c), slope angle (β), unit weight (γ), pore water 

pressure (ru), and angle of internal friction (φ). 

A total of 55 circular slopes were considered. Of the 46 cases from Sah et al. [28], 30 

failed and 16 were stable; of the 9 cases from Xu and Xie [29], 2 failed and 7 were stable. 

The original data covering the 55 case studies are presented in Table 1 that 45 cases were 

used for training and 10 cases were used for testing.  

 
Table 1: Circular slope failures reported by Sah et al. [28]∗, and Xu and Xie [29]∗∗ 

Case 

No. 

Input parameters 
Output 

parameter 
Location 

ɣ 
(kN/m

3
) 

C 

(kPa) 
φ (

o
) β(

o
) H (m) ru Failed/Stable

***
 

1 18.68 26.34 15 35 8.23 0 Failed=0 
Congress street, open cut 

slope, Chicago, USA 

2 16.5 11.49 0 30 3.66 0 Failed=0 Brightlingsea slide UK 

3 18.84 14.36 25 20 30.5 0 Stable=1 Unknown 

4 18.84 57.46 20 20 30.5 0 Stable=1 Unknown 

5 28.44 29.42 35 35 100 0 Stable=1 
Case 1: open pit iron ore 

mine, India 

6 28.44 39.23 38 35 100 0 Stable=1 
Case 2: open pit iron ore 

mine, India 

7 20.6 16.28 26.5 30 40 0 Failed=0 
Open pit chromite mine, 

Orissa, India 

8 14.8 0 17 20 50 0 Failed=0 Sarukuygi landslide, Japan 

9 14 11.97 26 30 88 0 Failed=0 
Case 1: open pit iron ore 

mine, Goa, India 

10 25 120 45 53 120 0 Stable=1 
Mercoirol open pit coal mine, 

France 

11 26 150.05 45 50 200 0 Stable=1 
Marquesade open pit iron ore 

mine, Spain 

12 18.5 25 0 30 6 0 Failed=0 Unknown 

13 18.5 12 0 30 6 0 Failed=0 Unknown 

14 22.4 10 35 30 10 0 Stable=1 
Case 1: Highvale coal mine, 

Alberta, Canada 

15 21.4 10 30.34 30 20 0 Stable=1 
Case 2: Highvale coal mine, 

Alberta, Canada 

16 22 20 36 45 50 0 Failed=0 

Case 1: open pit coal mine, 

Newcastle coalfield, 

Australia 

17 22 0 36 45 50 0 Failed=0 Case 2: open pit coal mine, 
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Newcastle coalfield, 

Australia 

18 12 0 30 35 4 0 Stable=1 Unknown 

19 12 0 30 45 8 0 Failed=0 Unknown 

20 12 0 30 45 4 0 Stable=1 Unknown 

21 12 0 30 45 8 0 Failed=0 Unknown 

22 23.47 0 32 37 214 0 Failed=0 
Pima open pit mine, Arizona, 

USA 

23 16 70 20 40 115 0 Failed=0 Case 1: Wyoming, USA 

24 20.41 33.52 11 16 10.67 0.35 Stable=1 Seven Sisters Landslide, UK 

25 19.63 11.97 20 22 12.19 0.405 Failed=0 
Case 1: The Northolt slide, 

UK 

26 21.82 8.62 32 28 12.8 0.49 Failed=0 
Selset Landslide, Yorkshire, 

UK 

27 20.41 33.52 11 16 45.72 0.2 Failed=0 Saskatchewan dam, Canada 

28 18.84 15.32 30 25 10.67 0.38 Stable=1 
Case 2: The Northolt slide, 

UK 

29 18.84 0 20 20 7.62 0.45 Failed=0 Sudbury slide, UK 

30 21.43 0 20 20 61 0.5 Failed=0 
Folkstone Warren slide, 

Kent, UK 

31 19.06 11.71 28 35 21 0.11 Failed=0 
River bank side, Alberta, 

Canada 

32 18.84 14.36 25 20 30.5 0.45 Failed=0 Unknown 

33 21.51 6.94 30 31 76.81 0.38 Failed=0 Unknown 

34 14 11.97 26 30 88 0.45 Failed=0 
Case 2: open pit iron ore 

mine, Goa, India 

35 18 24 30.15 45 20 0.12 Failed=0 Athens slope, Greece 

36 23 0 20 20 100 0.3 Failed=0 
Open pit coal mine Allori 

coalfield, Italy 

37 22.4 100 45 45 15 0.25 Stable=1 
Case 1: open pit coal mine, 

Alberta, Canada 

38 22.4 10 35 45 10 0.4 Failed=0 
Case 2: open pit coal mine, 

Alberta, Canada 

39 20 20 36 45 50 0.25 Failed=0 

Case 3: open pit coal mine, 

Newcastle coalfield, 

Australia 

40 20 20 36 45 50 0.5 Failed=0 

Case 4: open pit coal mine, 

Newcastle coalfield, 

Australia 

41 20 0 36 45 50 0.25 Failed=0 

Case 5: open pit coal mine, 

Newcastle coalfield, 

Australia 

42 20 0 36 45 50 0.5 Failed=0 

Case 6: open pit coal mine, 

Newcastle coalfield, 

Australia 
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43 22 0 40 33 8 0.35 Stable=1 
Case 1: Harbour slope, 

Newcastle, Australia 

44 24 0 40 33 8 0.3 Stable=1 
Case 2: Harbour slope, 

Newcastle, Australia 

45 20 0 24.5 20 8 0.35 Stable=1 
Case 3: Harbour slope, 

Newcastle, Australia 

46 18 5 30 20 8 0.3 Stable=1 
Case 4: Harbour slope, 

Newcastle, Australia 

47 26.49 150 33 45 73 0.15 Stable=1 China 

48 26.70 150 33 50 130 0.25 Stable=1 China 

49 26.89 150 33 52 120 0.25 Stable=1 China 

50 26.57 300 38.7 45.3 80 0.15 Failed=0 China 

51 26.78 300 38.7 54 155 0.25 Failed=0 China 

52 26.81 200 35 58 138 0.25 Stable=1 China 

53 26.43 50 26.6 40 92.2 0.15 Stable=1 China 

54 26.7 50 26.6 50 170 0.25 Stable=1 China 

55 26.8 60 28.8 59 108 0.25 Stable=1 China 

∗Case 1–46.     ∗∗Case 47–55. 

***Mapping the state of failure has been considered as two possibilities: failed and 

stable, which are respectively represented by two state values: 0 and 1. 

 
 

4. PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR 

FAILURE USING HYBRID SVM-HS MODEL 
 

Popular methods in the SVM multi-class classification are including: ‘One against-all’, 

‘one-against-one’ and ‘binary tree’. The ‘binary tree’ SVM classification algorithm needs 

only k -1 two-class SVM classifiers for a case of k classes, while the ‘one-against-all’ SVM 

classification algorithm needs k two-class SVM classifiers where each one is trained with all 

of samples and the ‘one-against-one’ SVM classification algorithm needs k(k -1)/2 two-class 

SVM classifiers where each one is trained on data from two classes [14]. Obviously less 

two-class classifiers expedite the rate of training and recognition. In this paper, the ‘one-

against-all’ SVM classification algorithm is adopted for prediction and classification of the 

slope stability state (Failed/Stable), using the MATLAB environment (Fig. 3). 

As it can be seen in Fig. 3, height (H), cohesion (c), slope angle (β), unit weight (γ), pore 

water pressure (ru), and angle of internal friction (φ) were defined as input parameters into 

the SVM-HS model and the slope stability state (Failed/Stable) as output. 

The total data (55 data sets) are divided into two data sets: the training data (39 data sets) 

and the testing data (16 data sets), in which the training data sets are used to calculate the 

fitness function and train the SVM, and the testing data sets are used to examine the 

classification and prediction accuracy.  
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Figure 3. Diagnostic model of prediction of the slope stability state based on the SVM-HS model 

 

In this study applies an RBF kernel function in the SVM to obtain optimal solution. In 

HS-SVM model, the parameters σ, C of SVM model are optimized by HS. The related 

parameters C and σ for this kernel were varied in the arbitrarily fixed ranges [1, 4000] and 

[0, 6] so that to cover high and small regularization of the prediction model, and fat as well 

as thin kernels, respectively. In the harmony search, there are several coefficients, which 

their values can be adjusted to produce a better rate of convergence. Table 2 shows the 

coefficient values in the HS. 

 
Table 2: Coefficient values in the HS. 

Maximum number of iterations 100 

Harmony memory size (HMS) 40 

Number of new harmonies 10 

Harmony memory consideration rate 

(HMCR) 
0.95 

Pitch adjustment rate (PAR) 0.3 

Band width (bw) 

bw, 

max=59.98 

bw, min=0.1 

 
The adjusted parameters (σ, C) with maximal classification and prediction accuracy are 

selected as the most appropriate parameters. Then, the optimal parameters are utilized to 

train the SVM model. The classification and prediction accuracies and optimal parameters of 

the SVM model estimated by the HS are given in Table 3. 

 
Table 3: The classification and prediction accuracies and optimal parameters 

 Optimal 

values of σ 

parameters 

Optimal 

values of C 

parameters 

Optimal classification and 

prediction accuracies of 

SVM (%) 

HS-SVM 2.184 1031.7 97.45 

 

The performance indices obtained in Table 5 indicate the high performance of the 
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SVM-HS model that can be used successfully for the prediction of slope stability state 

(Failed/Stable). 

 

5. DISCUSSION AND CONCLUSION 
 

The prediction of a circular slope failure using SVM-HS suggests that this might prove to be 

a useful alternative, with distinct advantages over the LEMs. The advantage of the SVM-HS 

model in the analysis of slope stability problems over traditional LEMs is that no 

assumption needs to be made in advance about the shape or location of the failure surface, 

slice side forces and their directions. The SVM-HS model could be successful for predicting 

the state of slope stability depends upon the input data available. For predicting the state of 

slope stability considered in this paper, 55 cases were available; these showed good 

agreement with the observed state of stability (Failed/Stable). The SVM-HS model 

considered as input factors: unit weight, cohesion, internal friction angle, slope angle, slope 

height and pore pressure ratio. It is believed that a number of other factors could also be 

influential, for example the history of slope movement, engineering disturbance, climate and 

vegetation. However, lack of measurements prevents their direct incorporation. 

Subsequently, caution needs to be exercised in the practical implementation of a trained 

SVM-HS model, recognizing the limitations of the available input data. It would appear that 

SVM-HS model already provides a viable tool for situations where significant quantities of 

data are available. 

In this paper, a new approach namely SVM optimized by HS is proposed for the 

prediction of slope stability state (Failed/Stable). In our methodology, HS is employed as an 

optimization tool for determining the optimal value of user-defined parameters existing in 

the formulation of SVM. The optimization implementation increases the performance of 

SVM model. Moreover, this method requires less time for setting optimal value in 

comparison with other algorithms, which are usually used for finding these values. This 

study shows that the SVM combined with HS can be employed as a powerful tool for 

modeling of some problems involved in civil engineering. 
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